本文作者:admin

关于婚恋讨论的主题?

促天科技 2024-09-19 07:00 0 0条评论

一、关于婚恋讨论的主题?

所谓爱情是一对男女基于一定的社会基础和共同的生活理想,在各自内心形成的相互倾慕,并渴望对方成为自己终身伴侣的一种强烈、纯真、专一的感情。

性爱、理想和责任是构成爱情的三个基本要素。

性爱把爱情与人世间的其他的情感,如亲人之爱、朋友之情或同志之谊区别开来,是使爱情成为特殊的“情爱”。

理想赋予爱情深刻的社会内涵,是爱情生长的内在依据。

责任是对性爱和理想的升华,因此也成为爱情的以长久的重要保障,是坚贞×爱情的“试金石”。

二、java关于数组的讨论

Java关于数组的讨论

在Java编程中,数组是一种非常重要的数据结构,它能够存储同一类型的数据元素,并提供了方便的访问机制。本文将探讨Java中数组的各种特性、用法以及一些常见问题。

数组的定义和初始化

在Java中,数组是一个固定大小、相同数据类型的数据结构。要定义一个数组,可以使用以下语法:

int[] myArray = new int[5];

这里定义了一个包含5个整数元素的数组。初始化数组的另一种方式是直接给出元素的值:

int[] myArray = {1, 2, 3, 4, 5};

这样就创建了一个包含1到5这5个整数的数组。需要注意的是,一旦数组初始化后,其大小是固定的,不能再改变。

数组的访问和遍历

要访问数组中的元素,可以使用下标(index)来引用特定位置的元素。在Java数组中,下标从0开始计数:

int element = myArray[2]; // 访问第三个元素,值为3

除了直接访问元素外,还可以通过循环遍历数组中的所有元素:

for (int i = 0; i < myArray.length; i++) { System.out.println(myArray[i]); }

这段代码将依次打印数组中的每个元素。通过遍历数组,可以方便地对数组进行操作和处理。

多维数组

除了一维数组外,Java还支持多维数组,例如二维数组。二维数组可以看作是一维数组的数组,可以使用类似的方式声明和访问:

int[][] matrix = new int[3][3]; // 创建一个3x3的二维数组 matrix[0][0] = 1; // 访问第一行第一列的元素

通过多维数组,可以方便地表示更复杂的数据结构,如矩阵等。

数组的常见问题与解决方案

在使用数组时,可能会遇到一些常见问题,比如数组越界、数组拷贝等。下面针对这些问题给出一些解决方案:

1. 数组越界

数组越界是指访问数组时下标超出了有效范围,导致程序抛出ArrayIndexOutOfBoundsException异常。为了避免数组越界,可以在访问数组元素之前先检查下标的有效性:

if (index >= 0 && index < myArray.length) { // 访问数组元素 } else { // 处理越界情况 }

2. 数组拷贝

有时候需要对数组进行拷贝,可以使用Arrays工具类提供的copyOf方法来实现:

int[] copiedArray = Arrays.copyOf(myArray, myArray.length);

这样就可以将原数组复制到一个新的数组中,而且可以指定新数组的大小。

总结

通过本文的介绍,我们对Java中数组的定义、访问、初始化以及常见问题有了更深入的了解。数组作为一种重要的数据结构,在实际编程中经常会遇到,因此掌握好数组的使用方法对于提高编程效率和准确性非常重要。

希望本文能够帮助读者更好地理解和应用Java中关于数组的知识,也欢迎大家在使用数组过程中遇到问题时随时参考本文中提供的解决方案。

三、关于逆向思维的讨论

关于逆向思维的讨论

什么是逆向思维?

在不同领域中,逆向思维已经成为一种被广泛讨论和应用的概念。它是通过从反方向思考问题,寻找与众不同的解决方法的一种方法论。逆向思维打破了传统思维的束缚,鼓励我们跳出固有的思维模式,挑战常规的观点和假设。

逆向思维是一种富有创造力的思维方式,它通过反向思考问题的各个方面,从而打开新的视角和可能性。它不仅仅是逆向思维的方式,也可以被视为一种培养创新能力和解决问题能力的方法。

逆向思维的应用

逆向思维在各个领域中都有着广泛的应用,无论是工程、设计、科学、艺术还是商业。特别是在解决复杂问题和创新领域中,逆向思维常常是一个关键的工具。

在工程设计中,逆向思维可以帮助工程师们发现潜在的问题,提出改进的设计方案。通过从产品的逆向角度来思考,他们可以深入了解产品的运行机制,并发现隐藏的技术难题和潜在的改进点。

在科学研究中,逆向思维可以帮助科学家们发现问题的根本原因,并提出革命性的解决方案。通过挑战常规的知识和假设,他们可以发现新的理论和概念,从而推动科学的进步。

在商业领域中,逆向思维成为一种竞争的利器。通过观察和分析市场的逆向需求,企业可以开发独特的产品和服务,满足消费者的不同需求。逆向思维还可以帮助企业发现竞争对手的弱点,制定出击穴战略。

如何培养逆向思维?

逆向思维是一种需要培养和发展的能力。以下是一些有助于培养逆向思维的方法:

  1. 打破常规思维:跳出已有的思维模式和约束,鼓励自己思考与众不同的问题解决方式。
  2. 反向思考:从问题的逆向角度出发,思考问题的不同方面和可能性。
  3. 多元思维:拓宽自己的知识和视野,学习不同领域的知识和观点,培养综合思考的能力。
  4. 批判思维:质疑传统观念和常识,挑战假设,并寻找新的解决方案。
  5. 团队合作:与他人一起思考问题,通过不同的观点和经验碰撞,激发创新的火花。
  6. 持续学习:保持对新知识的好奇心,不断学习和充实自己的知识储备。

通过这些方法的综合运用,我们可以逐步培养和发展自己的逆向思维能力。

逆向思维的价值

逆向思维不仅仅是一种思维方式,它还具有重要的价值和意义。

首先,逆向思维可以帮助人们发现隐藏的机会和潜在的问题。通过从反方向思考,我们能够发现传统思维所忽略的细节和因素,从而更好地把握机遇和应对挑战。

其次,逆向思维可以培养创造力和创新能力。它可以激发我们寻找新的解决方案和创造新的价值,使我们能够在竞争激烈的环境中脱颖而出。

最后,逆向思维可以帮助人们在解决问题时更加全面和考虑周密。通过从反向角度思考,我们能够发现问题的潜在原因和解决方案,从而制定出更有效的解决策略。

结论

逆向思维作为一种富有创造力和创新能力的思维方式,在各个领域中都有着广泛的应用。通过培养和发展逆向思维能力,我们可以跳出传统思维的框架,发现新的可能性,解决复杂的问题。

无论是在工程、科学、艺术还是商业领域,逆向思维都可以成为我们的利器。相信在未来的发展中,逆向思维将继续发挥重要的作用,并为创新和进步带来新的突破。

四、关于法律实务的讨论

关于法律实务的讨论

在现代社会中,法律实务是一个非常重要的领域。无论是在商业、民事、刑事还是行政方面,法律实务都是保持社会秩序和公正的关键所在。对于一些专业人士来说,深入了解和讨论法律实务是非常必要的。

首先,理解和掌握法律实务对于律师来说是至关重要的。作为法律界的专业人士,律师们需要了解各种相关法律条文和案例,以便为客户提供最佳的法律建议和解决方案。在日常实务中,律师需要进行法律研究、准备法律文件、出庭辩护等工作,因此对法律实务进行深入讨论可以帮助律师们更好地理解和运用法律规则。

其次,法律实务的讨论也对法官和法院工作人员来说具有重要意义。法官们需要在审查案情和作出判决时依据相关法律原则和判例进行决策。通过深入和广泛的法律实务讨论,法官们可以这些讨论中了解到不同的解释和观点,并运用到自己的审判工作中。而法院工作人员也需要掌握法律实务,以协助法官进行案件调查和协调法庭工作。

法律实务讨论的重点

在法律实务讨论中,一些重点常常被关注。首先是法律条文和规则的解释和适用。法律条文通常都需要在具体案例中进行解释和适用,因此对于法律实务的讨论中我们经常会看到对于具体条款的深入分析和解读。这种讨论有助于澄清与解释法律条文,帮助人们更好地理解和运用法律规则。

其次是案例研究和法律先例的分析。在法律实务中,案例和判例是非常重要的。通过讨论一些重要案例和法律先例,人们可以了解到不同案件的处理方式和相关法律原则的适用。这对于律师和法官来说都非常有益。律师可以从中汲取有益经验和思路,法官可以借鉴先例作出更加准确的判决。

此外,法律实务讨论还关注于对于实际问题的解决方案。这些实际问题可以是一些常见的法律纠纷或者涉及到法律改革和调整的问题。通过讨论不同的观点和建议,可以找到最佳的解决方案,从而促进法律的发展和完善。

法律实务讨论的重要性

通过深入的法律实务讨论,我们可以从多个角度理解和解决法律问题。这种讨论的重要性体现在以下几个方面:

  1. 促进法律理论和实践的结合。法律理论和实践是相辅相成的,其间的联系非常紧密。只有在实践的基础上进行讨论,才能更好地发展和改进法律理论,为法律实务提供更好的指导。
  2. 推动法律的创新和发展。通过讨论法律实务,可以在实践中发现问题,并提出针对性的改革意见。这种讨论有助于推动法律的创新和发展,使其更加适应社会的需要。
  3. 促进法律专业人士的交流与合作。法律实务讨论为律师、法官以及法律学者提供了一个交流与合作的平台。这种交流有助于分享经验,互相学习,提高各自的专业水平。
  4. 提高公众对法律的认知和理解。法律实务讨论的结果可以被广泛传播和分享,有助于提高公众对法律的认知和理解。这对于构建和谐、法治的社会环境非常重要。

总之,关于法律实务的讨论对于律师、法官以及其他法律专业人士来说都具有重要意义。通过深入的讨论,我们可以更好地理解和运用法律规则,提高专业水平,促进社会的公正与和谐。

五、有没有讨论论文的,关于人工智能,机器人论文?

人工智能相关论文

【1】 Rollout Algorithms and Approximate Dynamic Programming for Bayesian Optimization and Sequential Estimation

标题:用于贝叶斯优化和序列估计的滚动算法和近似动态编程

作者:Dimitri Bertsekas链接:https://arxiv.org/abs/2212.07998摘要:We provide a unifying approximate dynamic programming framework that applies to a broad variety of problems involving sequential estimation. We consider first the construction of surrogate cost functions for the purposes of optimization, and we focus on the special case of Bayesian optimization, using the rollout algorithm and some of its variations. We then discuss the more general case of sequential estimation of a random vector using optimal measurement selection, and its application to problems of stochastic and adaptive control. We finally consider related search and sequential decoding problems, and a rollout algorithm for the approximate solution of the Wordle and Mastermind puzzles, recently developed in the paper [BBB22].我们提供了一个统一的近似动态编程框架,适用于涉及序列估计的各种问题。我们首先考虑为优化目的而构建代用成本函数,我们重点讨论贝叶斯优化的特殊情况,使用推出算法及其一些变化。然后,我们讨论了使用最优测量选择对随机矢量进行顺序估计的更一般的情况,以及它对随机和适应性控制问题的应用。最后,我们考虑了相关的搜索和顺序解码问题,以及最近在论文[BBB22]中开发的用于近似解决Wordle和Mastermind谜题的滚屏算法。

【2】 Intensional First Order Logic for Strong-AI Generation of Robots

标题:用于强人工智能机器人生成的扩展性一阶逻辑作者:Zoran Majkic链接:https://arxiv.org/abs/2212.07935摘要:Neuro-symbolic AI attempts to integrate neural and symbolic architectures in a manner that addresses strengths and weaknesses of each, in a complementary fashion, in order to support robust strong AI capable of reasoning, learning, and cognitive modeling. In this paper we consider the intensional First Order Logic (IFOL) as a symbolic architecture of modern robots, able to use natural languages to communicate with humans and to reason about their own knowledge with self-reference and abstraction language property. We intend to obtain the grounding of robot's language by experience of how it uses its neuronal architectures and hence by associating this experience with the mining (sense) of non-defined language concepts (particulars/individuals and universals) in PRP (Properties/Relations/propositions) theory of IFOL. We consider three natural language levels: The syntax of particular natural language (Italian, French, etc..), and two universal language properties: its semantic logic structure (based on virtual predicates of FOL and logic connectives), and its corresponding conceptual PRP structure which universally represents the composite mining of FOL formulae grounded on the robot's neuro system.神经符号人工智能试图以一种互补的方式整合神经和符号架构,解决各自的优势和劣势,以支持能够推理、学习和认知建模的强大人工智能。在本文中,我们考虑将广义一阶逻辑(IFOL)作为现代机器人的符号架构,能够使用自然语言与人类交流,并通过自我参照和抽象语言属性对自己的知识进行推理。我们打算通过机器人如何使用其神经元架构的经验来获得机器人语言的基础,从而将这种经验与IFOL的PRP(属性/关系/命题)理论中的非定义语言概念(特殊/个体和普遍)的挖掘(意义)联系起来。我们考虑三个自然语言层面。特定自然语言(意大利语、法语等)的语法,以及两个普遍的语言属性:其语义逻辑结构(基于FOL的虚拟谓词和逻辑连接词),以及其相应的概念性PRP结构,该结构普遍代表了基于机器人神经系统的FOL公式的复合挖掘。

【3】 Multi-Agent Reinforcement Learning with Shared Resources for Inventory Management

标题:带有共享资源的库存管理的多代理强化学习作者:Yuandong Ding, Mingxiao Feng, Guozi Liu, Wei Jiang, Chuheng Zhang, Li Zhao, Lei Song, Houqiang Li, Yan Jin, Jiang Bian链接:https://arxiv.org/abs/2212.07684摘要:In this paper, we consider the inventory management (IM) problem where we need to make replenishment decisions for a large number of stock keeping units (SKUs) to balance their supply and demand. In our setting, the constraint on the shared resources (such as the inventory capacity) couples the otherwise independent control for each SKU. We formulate the problem with this structure as Shared-Resource Stochastic Game (SRSG)and propose an efficient algorithm called Context-aware Decentralized PPO (CD-PPO). Through extensive experiments, we demonstrate that CD-PPO can accelerate the learning procedure compared with standard MARL algorithms.在本文中,我们考虑了库存管理(IM)问题,即我们需要对大量的库存单位(SKU)进行补货决策,以平衡它们的供应和需求。在我们的设定中,对共享资源(如库存容量)的约束使每个SKU的独立控制成为可能。我们将这种结构的问题表述为共享资源随机博弈(SRSG),并提出了一种高效的算法,称为上下文感知的分散式PPO(CD-PPO)。通过广泛的实验,我们证明CD-PPO与标准的MARL算法相比,可以加速学习过程。

【4】 Many-valued Argumentation, Conditionals and a Probabilistic Semantics for Gradual Argumentation

标题:多值论证、条件论和渐进论证的概率语义学作者:Mario Alviano, Laura Giordano, Daniele Theseider Dupré链接:https://arxiv.org/abs/2212.07523摘要:In this paper we propose a general approach to define a many-valued preferential interpretation of gradual argumentation semantics. The approach allows for conditional reasoning over arguments and boolean combination of arguments, with respect to a class of gradual semantics, through the verification of graded (strict or defeasible) implications over a preferential interpretation. As a proof of concept, in the finitely-valued case, an Answer set Programming approach is proposed for conditional reasoning in a many-valued argumentation semantics of weighted argumentation graphs. The paper also develops and discusses a probabilistic semantics for gradual argumentation, which builds on the many-valued conditional semantics.在本文中,我们提出了一种定义渐进式论证语义的多值优先解释的一般方法。该方法允许对论据和论据的布尔组合进行条件推理,就一类渐变语义而言,通过对优先解释的分级(严格或可忽略)含义的验证。作为概念的证明,在有限值的情况下,为加权论证图的多值论证语义中的条件推理提出了一种答案集编程方法。本文还发展并讨论了渐进式论证的概率语义,它建立在多值条件语义的基础上。

【5】 FlexiViT: One Model for All Patch Sizes

标题:FlexiViT: 一个模型适用于所有补丁尺寸作者:Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, Filip Pavetic链接:https://arxiv.org/abs/2212.08013摘要:Vision Transformers convert images to sequences by slicing them into patches. The size of these patches controls a speed/accuracy tradeoff, with smaller patches leading to higher accuracy at greater computational cost, but changing the patch size typically requires retraining the model. In this paper, we demonstrate that simply randomizing the patch size at training time leads to a single set of weights that performs well across a wide range of patch sizes, making it possible to tailor the model to different compute budgets at deployment time. We extensively evaluate the resulting model, which we call FlexiViT, on a wide range of tasks, including classification, image-text retrieval, open-world detection, panoptic segmentation, and semantic segmentation, concluding that it usually matches, and sometimes outperforms, standard ViT models trained at a single patch size in an otherwise identical setup. Hence, FlexiViT training is a simple drop-in improvement for ViT that makes it easy to add compute-adaptive capabilities to most models relying on a ViT backbone architecture. 视觉变换器通过将图像切成斑块将其转换为序列。这些斑块的大小控制着速度/准确度的权衡,较小的斑块导致较高的准确度,但计算成本较高,但改变斑块大小通常需要重新训练模型。在本文中,我们证明了在训练时简单地随机化补丁大小会导致一组权重在广泛的补丁大小范围内表现良好,使得在部署时根据不同的计算预算定制模型成为可能。我们对所产生的模型进行了广泛的评估,我们称之为FlexiViT,其任务包括分类、图像-文本检索、开放世界检测、全景分割和语义分割,结论是它通常与在其他相同的设置中以单一补丁大小训练的标准ViT模型相匹配,有时甚至优于后者。因此,FlexiViT训练是对ViT的一个简单的改进,可以很容易地将计算适应能力添加到大多数依赖于ViT骨干结构的模型中。

【6】 Zero-Shot Learning for Joint Intent and Slot Labeling标题:用于联合意图和槽位标签的零样本学习作者:Rashmi Gangadharaiah, Balakrishnan Narayanaswamy链接:https://arxiv.org/abs/2212.07922摘要:It is expensive and difficult to obtain the large number of sentence-level intent and token-level slot label annotations required to train neural network (NN)-based Natural Language Understanding (NLU) components of task-oriented dialog systems, especially for the many real world tasks that have a large and growing number of intents and slot types. While zero shot learning approaches that require no labeled examples -- only features and auxiliary information -- have been proposed only for slot labeling, we show that one can profitably perform joint zero-shot intent classification and slot labeling. We demonstrate the value of capturing dependencies between intents and slots, and between different slots in an utterance in the zero shot setting. We describe NN architectures that translate between word and sentence embedding spaces, and demonstrate that these modifications are required to enable zero shot learning for this task. We show a substantial improvement over strong baselines and explain the intuition behind each architectural modification through visualizations and ablation studies.要获得大量的句子级别的意图和标记级别的槽位标签注释来训练基于神经网络(NN)的面向任务的对话系统的自然语言理解(NLU)组件是非常昂贵和困难的,特别是对于许多具有大量且不断增长的意图和槽位类型的现实世界任务。虽然不需要标记的例子--只有特征和辅助信息--的零点学习方法只被提出来用于槽的标记,但我们表明可以有利地进行零点意图分类和槽的联合标记。我们证明了捕捉意图和槽之间的依赖关系的价值,以及在零次拍摄的语篇中不同槽之间的依赖关系。我们描述了在词和句子嵌入空间之间转换的NN架构,并证明这些修改是实现这一任务的零点学习所必需的。我们展示了对强基线的实质性改进,并通过可视化和消减研究解释了每个架构修改背后的直觉。

【7】 Manifestations of Xenophobia in AI Systems标题:人工智能系统中的仇外心理表现作者:Nenad Tomasev, Jonathan Leader Maynard, Iason Gabriel链接:https://arxiv.org/abs/2212.07877摘要:Xenophobia is one of the key drivers of marginalisation, discrimination, and conflict, yet many prominent machine learning (ML) fairness frameworks fail to comprehensively measure or mitigate the resulting xenophobic harms. Here we aim to bridge this conceptual gap and help facilitate safe and ethical design of artificial intelligence (AI) solutions. We ground our analysis of the impact of xenophobia by first identifying distinct types of xenophobic harms, and then applying this framework across a number of prominent AI application domains, reviewing the potential interplay between AI and xenophobia on social media and recommendation systems, healthcare, immigration, employment, as well as biases in large pre-trained models. These help inform our recommendations towards an inclusive, xenophilic design of future AI systems.仇外心理是边缘化、歧视和冲突的主要驱动因素之一,但许多著名的机器学习(ML)公平性框架未能全面衡量或减轻由此产生的仇外心理伤害。在这里,我们旨在弥补这一概念上的差距,帮助促进人工智能(AI)解决方案的安全和道德设计。我们对仇外心理的影响进行了分析,首先确定了不同类型的仇外伤害,然后将这一框架应用于一些著名的人工智能应用领域,回顾了人工智能和仇外心理在社交媒体和推荐系统、医疗、移民、就业以及大型预训练模型中的潜在相互作用。这些都有助于为我们对未来人工智能系统的包容性、排外性的设计提供建议。

【8】 Population Template-Based Brain Graph Augmentation for Improving One-Shot Learning Classification标题:基于群体模板的脑图增强,提高单次学习分类能力作者:Oben Özgür, Arwa Rekik, Islem Rekik链接:https://arxiv.org/abs/2212.07790摘要:The challenges of collecting medical data on neurological disorder diagnosis problems paved the way for learning methods with scarce number of samples. Due to this reason, one-shot learning still remains one of the most challenging and trending concepts of deep learning as it proposes to simulate the human-like learning approach in classification problems. Previous studies have focused on generating more accurate fingerprints of the population using graph neural networks (GNNs) with connectomic brain graph data. Thereby, generated population fingerprints named connectional brain template (CBTs) enabled detecting discriminative bio-markers of the population on classification tasks. However, the reverse problem of data augmentation from single graph data representing brain connectivity has never been tackled before. In this paper, we propose an augmentation pipeline in order to provide improved metrics on our binary classification problem. Divergently from the previous studies, we examine augmentation from a single population template by utilizing graph-based generative adversarial network (gGAN) architecture for a classification problem. We benchmarked our proposed solution on AD/LMCI dataset consisting of brain connectomes with Alzheimer's Disease (AD) and Late Mild Cognitive Impairment (LMCI). In order to evaluate our model's generalizability, we used cross-validation strategy and randomly sampled the folds multiple times. Our results on classification not only provided better accuracy when augmented data generated from one sample is introduced, but yields more balanced results on other metrics as well.收集神经系统疾病诊断问题的医疗数据所面临的挑战,为具有稀缺样本数量的学习方法铺平了道路。由于这个原因,一次性学习仍然是深度学习中最具挑战性和趋势性的概念之一,因为它提议在分类问题中模拟类似人类的学习方法。以前的研究集中在使用图神经网络(GNN)与连接体脑图数据生成更准确的群体指纹。因此,生成的人群指纹被命名为连接脑模板(CBTs),能够在分类任务中检测出人群的鉴别性生物标记。然而,从代表大脑连接的单一图数据中进行数据增强的反向问题以前从未被解决过。在本文中,我们提出了一个扩增管道,以便为我们的二元分类问题提供更好的指标。与之前的研究不同,我们通过利用基于图的生成对抗网络(gGAN)架构,对单一群体模板的分类问题进行增强。我们在由阿尔茨海默病(AD)和晚期轻度认知障碍(LMCI)的大脑连接体组成的AD/LMCI数据集上对我们提出的解决方案进行了基准测试。为了评估我们模型的普适性,我们使用了交叉验证策略,并对褶皱进行了多次随机采样。我们的分类结果不仅在引入由一个样本产生的增强数据时提供了更好的准确性,而且在其他指标上也产生了更均衡的结果。

【9】 A New Deep Boosted CNN and Ensemble Learning based IoT Malware Detection

标题:一种新的基于深度提升的CNN和集合学习的物联网恶意软件检测方法作者:Saddam Hussain Khan, Wasi Ullah (Department of Computer Systems Engineering, University of Engineering and Applied Science, Swat, Pakistan)链接:https://arxiv.org/abs/2212.08008摘要:Security issues are threatened in various types of networks, especially in the Internet of Things (IoT) environment that requires early detection. IoT is the network of real-time devices like home automation systems and can be controlled by open-source android devices, which can be an open ground for attackers. Attackers can access the network, initiate a different kind of security breach, and compromises network control. Therefore, timely detecting the increasing number of sophisticated malware attacks is the challenge to ensure the credibility of network protection. In this regard, we have developed a new malware detection framework, Deep Squeezed-Boosted and Ensemble Learning (DSBEL), comprised of novel Squeezed-Boosted Boundary-Region Split-Transform-Merge (SB-BR-STM) CNN and ensemble learning. The proposed S.T.M. block employs multi-path dilated convolutional, Boundary, and regional operations to capture the homogenous and heterogeneous global malicious patterns. Moreover, diverse feature maps are achieved using transfer learning and multi-path-based squeezing and boosting at initial and final levels to learn minute pattern variations. Finally, the boosted discriminative features are extracted from the developed deep SB-BR-STM CNN and provided to the ensemble classifiers (SVM, M.L.P., and AdaboostM1) to improve the hybrid learning generalization. The performance analysis of the proposed DSBEL framework and SB-BR-STM CNN against the existing techniques have been evaluated by the IOT_Malware dataset on standard performance measures. Evaluation results show progressive performance as 98.50% accuracy, 97.12% F1-Score, 91.91% MCC, 95.97 % Recall, and 98.42 % Precision. The proposed malware analysis framework is helpful for the timely detection of malicious activity and suggests future strategies.安全问题在各种类型的网络中都受到威胁,特别是在物联网(IoT)环境中,需要早期检测。物联网是由家庭自动化系统等实时设备组成的网络,可以由开源的安卓设备控制,这对攻击者来说是一个开放的场所。攻击者可以访问网络,启动不同的安全漏洞,并破坏网络控制。因此,及时发现越来越多的复杂恶意软件攻击是确保网络保护可信度的挑战。在这方面,我们开发了一个新的恶意软件检测框架,即深度挤压提升和集合学习(DSBEL),由新颖的挤压提升边界-区域分割-变换-合并(SB-BR-STM)CNN和集合学习组成。拟议的S.T.M.块采用多路径扩张卷积、边界和区域操作来捕捉同质和异质的全球恶意模式。此外,利用转移学习和基于多路径的挤压和提升,在初始和最终层面实现多样化的特征图,以学习微小的模式变化。最后,从开发的深度SB-BR-STM CNN中提取提升的判别特征,并提供给集合分类器(SVM、M.L.P.和AdaboostM1)以提高混合学习的通用性。拟议的DSBEL框架和SB-BR-STM CNN相对于现有技术的性能分析已经通过IOT_Malware数据集的标准性能指标进行了评估。评估结果显示,准确率为98.50%,F1分数为97.12%,MCC为91.91%,召回率为95.97%,精确度为98.42%。拟议的恶意软件分析框架有助于及时检测恶意活动,并提出了未来的策略。


人机交互相关论文

【1】 DOPAMINE: Doppler frequency and Angle of arrival MINimization of tracking Error for extended reality标题:DOPAMINE: 多普勒频率和到达角 延伸现实的跟踪误差最小化作者:Andrea Bedin, Alexander Marinšek, Shaghayegh Shahcheraghi, Nairy Moghadas Gholian, Liesbet Van der Perre链接:https://arxiv.org/abs/2212.07764摘要:In this paper, we investigate how Joint Communication And Sensing (JCAS) can be used to improve the Inertial Measurement Unit (IMU)- based tracking accuracy of eXtended Reality (XR) Head-Mounted Displays (HMDs). Such tracking is used when optical and InfraRed (IR) tracking is lost, and its lack of accuracy can lead to disruption of the user experience. In particular, we analyze the impact of using doppler-based speed estimation to aid the accelerometer-based position estimation, and Angle of Arrival (AoA) estimation to aid the gyroscope-based orientation estimation. Although less accurate than IMUs for short times in fact, the JCAS based methods require one fewer integration step, making the tracking more sustainable over time. Based on the proposed model, we conclude that at least in the case of the position estimate, introducing JCAS can make long lasting optical/IR tracking losses more sustainable.在本文中,我们研究了如何利用联合通信和传感(JCAS)来改善基于惯性测量单元(IMU)的扩展现实(XR)头戴式显示器(HMD)的跟踪精度。当光学和红外(IR)跟踪丢失时,就会使用这种跟踪,而其缺乏准确性会导致用户体验的中断。特别是,我们分析了使用基于多普勒的速度估计来帮助基于加速度计的位置估计,以及使用到达角(AoA)估计来帮助基于陀螺仪的方向估计的影响。虽然在短时间内的准确度不如IMU,但基于JCAS的方法需要较少的整合步骤,使跟踪随着时间的推移更加持久。基于所提出的模型,我们得出结论,至少在位置估计的情况下,引入JCAS可以使长期的光学/红外跟踪损失更加持续。

【2】 Improving Developers' Understanding of Regex Denial of Service Tools through Anti-Patterns and Fix Strategies标题:通过反模式和修复策略提高开发人员对拒绝服务工具的认识作者:Sk Adnan Hassan, Zainab Aamir, Dongyoon Lee, James C. Davis, Francisco Servant链接:https://arxiv.org/abs/2212.07979摘要:Regular expressions are used for diverse purposes, including input validation and firewalls. Unfortunately, they can also lead to a security vulnerability called ReDoS (Regular Expression Denial of Service), caused by a super-linear worst-case execution time during regex matching. Due to the severity and prevalence of ReDoS, past work proposed automatic tools to detect and fix regexes. Although these tools were evaluated in automatic experiments, their usability has not yet been studied; usability has not been a focus of prior work. Our insight is that the usability of existing tools to detect and fix regexes will improve if we complement them with anti-patterns and fix strategies of vulnerable regexes. We developed novel anti-patterns for vulnerable regexes, and a collection of fix strategies to fix them. We derived our anti-patterns and fix strategies from a novel theory of regex infinite ambiguity - a necessary condition for regexes vulnerable to ReDoS. We proved the soundness and completeness of our theory. We evaluated the effectiveness of our anti-patterns, both in an automatic experiment and when applied manually. Then, we evaluated how much our anti-patterns and fix strategies improve developers' understanding of the outcome of detection and fixing tools. Our evaluation found that our anti-patterns were effective over a large dataset of regexes (N=209,188): 100% precision and 99% recall, improving the state of the art 50% precision and 87% recall. Our anti-patterns were also more effective than the state of the art when applied manually (N=20): 100% developers applied them effectively vs. 50% for the state of the art. Finally, our anti-patterns and fix strategies increased developers' understanding using automatic tools (N=9): from median "Very weakly" to median "Strongly" when detecting vulnerabilities, and from median "Very weakly" to median "Very strongly" when fixing them.正则表达式被用于多种用途,包括输入验证和防火墙。不幸的是,它们也会导致一种叫做ReDoS(正则表达式拒绝服务)的安全漏洞,这种漏洞是由正则表达式匹配过程中的超线性最坏情况下的执行时间引起。由于ReDoS的严重性和普遍性,过去的工作提出了自动工具来检测和修复REGEXES。尽管这些工具在自动实验中得到了评估,但它们的可用性还没有被研究过;可用性还没有成为先前工作的重点。我们的见解是,如果我们用反模式和易受攻击的词组的修复策略来补充现有的检测和修复词组的工具,其可用性将会提高。我们开发了新的反模式,用于易受攻击的词组,并开发了一系列的修复策略来修复它们。我们的反模式和修复策略来自于一个新的关于词组无限模糊性的理论--这是一个容易受到ReDoS攻击的词组的必要条件。我们证明了我们理论的合理性和完整性。我们评估了我们的反模式的有效性,包括在自动实验和手动应用时。然后,我们评估了我们的反模式和修复策略在多大程度上改善了开发者对检测和修复工具结果的理解。我们的评估发现,我们的反模式对一个大型的词组数据集(N=209,188)是有效的。100%的精度和99%的召回率,提高了50%的精度和87%的召回率。我们的反模式在手动应用(N=20)时也比现有技术水平更有效:100%的开发者有效地应用它们,而现有技术水平只有50%。最后,我们的反模式和修复策略提高了开发者使用自动工具的理解能力(N=9):在检测漏洞时,从中位数 "非常弱 "到中位数 "强";在修复漏洞时,从中位数 "非常弱 "到中位数 "非常强"。

【3】 Beyond the Metaverse: XV (eXtended meta/uni/Verse)标题:元宇宙之外:XV(eXtended meta/omni/uni/Verse)作者:Steve Mann, Yu Yuan, Tom Furness, Joseph Paradiso, Thomas Coughlin链接:https://arxiv.org/abs/2212.07960摘要:We propose the term and concept XV (eXtended meta/omni/uni/Verse) as an alternative to, and generalization of, the shared/social virtual reality widely known as ``metaverse''. XV is shared/social XR. We, and many others, use XR (eXtended Reality) as a broad umbrella term and concept to encompass all the other realities, where X is an ``anything'' variable, like in mathematics, to denote any reality, X ∈ \{physical, virtual, augmented, \ldots \} reality. Therefore XV inherits this generality from XR. We begin with a very simple organized taxonomy of all these realities in terms of two simple building blocks: (1) physical reality (PR) as made of ``atoms'', and (2) virtual reality (VR) as made of ``bits''. Next we introduce XV as combining all these realities with extended society as a three-dimensional space and taxonomy of (1) ``atoms'' (physical reality), (2) ``bits'' (virtuality), and (3) ``genes'' (sociality). Thus those working in the liminal space between Virtual Reality (VR), Augmented Reality (AR), metaverse, and their various extensions, can describe their work and research as existing in the new field of XV. XV includes the metaverse along with extensions of reality itself like shared seeing in the infrared, ultraviolet, and shared seeing of electromagnetic radio waves, sound waves, and electric currents in motors. For example, workers in a mechanical room can look at a pump and see a superimposed time-varying waveform of the actual rotating magnetic field inside its motor, in real time, while sharing this vision across multiple sites.我们提出了XV(eXtended meta/omni/uni/Verse)这一术语和概念,作为广泛称为 "metaverse "的共享/社会虚拟现实的替代和概括。XV是共享/社会XR。我们和许多其他人使用XR(eXtended Reality)作为一个广泛的伞状术语和概念,以包括所有其他的现实,其中X是一个 "任何东西 "的变量,就像在数学中,表示任何现实,X∈{物理、虚拟、增强、ldots }现实。因此,XV从XR继承了这种一般性。我们以两个简单的构件开始对所有这些现实进行一个非常简单的有组织的分类:(1)由 "原子 "组成的物理现实(PR),以及(2)由 "比特 "组成的虚拟现实(VR)。接下来,我们介绍XV,将所有这些现实与扩展的社会结合起来,作为一个三维空间和分类法:(1)"原子"(物理现实),(2)"比特"(虚拟性),和(3)"基因"(社会性)。因此,那些在虚拟现实(VR)、增强现实(AR)、元空间及其各种扩展之间的边缘空间工作的人,可以把他们的工作和研究描述为存在于XV这个新领域中。XV包括元空间以及现实本身的延伸,如在红外线、紫外线中的共享视觉,以及对电磁波、声波和电机中的电流的共享视觉。例如,机械室里的工人可以看一个泵,并实时看到其电机内实际旋转磁场的叠加时间变化波形,同时在多个地点共享这一视觉。

【4】 Synthesizing Research on Programmers' Mental Models of Programs, Tasks and Concepts -- a Systematic Literature Review标题:综合研究程序员对程序、任务和概念的心理模型--系统的文献回顾作者:Ava Heinonen, Bettina Lehtelä, Arto Hellas, Fabian Fagerholm链接:https://arxiv.org/abs/2212.07763摘要:Programmers' mental models represent their knowledge and understanding of programs, programming concepts, and programming in general. They guide programmers' work and influence their task performance. Understanding mental models is important for designing work systems and practices that support programmers. Although the importance of programmers' mental models is widely acknowledged, research on mental models has decreased over the years. The results are scattered and do not take into account recent developments in software engineering. We analyze the state of research into programmers' mental models and provide an overview of existing research. We connect results on mental models from different strands of research to form a more unified knowledge base on the topic. We conducted a systematic literature review on programmers' mental models. We analyzed literature addressing mental models in different contexts, including mental models of programs, programming tasks, and programming concepts. Using nine search engines, we found 3678 articles (excluding duplicates). 84 were selected for further analysis. Using the snowballing technique, we obtained a final result set containing 187 articles. We show that the literature shares a kernel of shared understanding of mental models. By collating and connecting results on mental models from different fields of research, we uncovered some well-researched aspects, which we argue are fundamental characteristics of programmers' mental models. This work provides a basis for future work on mental models. The research field on programmers' mental models still faces many challenges rising from a lack of a shared knowledge base and poorly defined constructs. We created a unified knowledge base on the topic. We also point to directions for future studies. In particular, we call for studies that examine programmers working with modern practices and tools.程序员的心理模型代表了他们对程序、编程概念和一般编程的知识和理解。它们指导程序员的工作,并影响他们的任务表现。理解心理模型对于设计支持程序员的工作系统和实践非常重要。尽管程序员心智模式的重要性被广泛认可,但多年来对心智模式的研究却在减少。这些研究结果是分散的,没有考虑到软件工程的最新发展。我们分析了对程序员心理模型的研究状况,并对现有的研究进行了概述。我们把来自不同研究领域的关于心理模型的结果联系起来,以形成一个关于该主题的更统一的知识库。我们对程序员的心理模型进行了系统的文献回顾。我们分析了不同背景下的心理模型的文献,包括程序的心理模型、编程任务和编程概念。使用九个搜索引擎,我们找到了3678篇文章(不包括重复的)。挑选了84篇进行进一步分析。使用滚雪球技术,我们得到了一个包含187篇文章的最终结果集。我们表明,这些文献分享了对心理模型的共同理解的内核。通过整理和连接来自不同研究领域的关于心理模型的结果,我们发现了一些经过充分研究的方面,我们认为这些是程序员心理模型的基本特征。这项工作为未来关于心理模型的工作提供了一个基础。关于程序员心理模型的研究领域仍然面临着许多挑战,这些挑战来自于缺乏一个共享的知识库和定义不清的结构。我们创建了一个关于这个主题的统一的知识库。我们还指出了未来研究的方向。特别是,我们呼吁对使用现代实践和工具的程序员的研究。

【5】 Tensions Between the Proxies of Human Values in AI标题:人工智能中人类价值的代名词之间的紧张关系作者:Teresa Datta, Daniel Nissani, Max Cembalest, Akash Khanna, Haley Massa, John P. Dickerson链接:https://arxiv.org/abs/2212.07508摘要:Motivated by mitigating potentially harmful impacts of technologies, the AI community has formulated and accepted mathematical definitions for certain pillars of accountability: e.g. privacy, fairness, and model transparency. Yet, we argue this is fundamentally misguided because these definitions are imperfect, siloed constructions of the human values they hope to proxy, while giving the guise that those values are sufficiently embedded in our technologies. Under popularized methods, tensions arise when practitioners attempt to achieve each pillar of fairness, privacy, and transparency in isolation or simultaneously. In this position paper, we push for redirection. We argue that the AI community needs to consider all the consequences of choosing certain formulations of these pillars -- not just the technical incompatibilities, but also the effects within the context of deployment. We point towards sociotechnical research for frameworks for the latter, but push for broader efforts into implementing these in practice.出于减轻技术潜在有害影响的动机,人工智能界已经制定并接受了某些责任制支柱的数学定义:如隐私、公平和模型透明度。然而,我们认为这从根本上来说是错误的,因为这些定义是不完善的,是他们希望代理的人类价值的孤立的构造,同时也给这些价值充分嵌入我们的技术打上了幌子。在流行的方法下,当从业者试图孤立地或同时实现公平、隐私和透明的每个支柱时,就会出现紧张。在这份立场文件中,我们推动了方向性的改变。我们认为,人工智能界需要考虑选择这些支柱的某些形式的所有后果--不仅仅是技术上的不相容性,还有在部署背景下的影响。我们指出,社会技术研究是为了建立后者的框架,但也要推动更广泛的努力在实践中实施这些框架。


机器翻译由DeepL翻译生成,仅供参考。

六、关于讨论的排比句?

大家讨论热烈:有的讨论学习写作,有的讨论学习地理,有的讨论学习历史

七、关于孔子的观点讨论主题?

答案是:1、礼(外在的典章礼仪等制度)主张恢复周礼,维护宗法等级制度——礼治

2、仁(内在道德规范——道德观核心)

①克己复礼为仁——个人修养最基本原则

②仁者爱人——体现在“忠”与“恕”两方面

其恕乎?己所不欲,勿施于人——“恕”:宽容待人

己欲立而立人,己欲达而达人——“忠”:真实诚意、忠实待人

还提出许多行为规范:孝悌,温良恭俭让,恭宽信敏惠,仁义礼知信,勇、义利、中庸。

③为政以德——德治

3、教育

①办私学,有教无类 ②整理文献(六经)

八、关于辩证思维的讨论

关于辩证思维的讨论

辩证思维是指从矛盾、对立面出发,通过辩证推理、辩证综合的方式,来认识和改造客观世界的思维方法和方法论。作为一种哲学思维方式,辩证思维在中国古代就有着悠久的历史,而今天它依然具有重要的理论和实践意义。

辩证思维的核心思想是对立统一和矛盾普遍性。在哲学上,对立统一是指存在于事物内部的对立面通过矛盾相互依存、相互渗透而形成的统一体。任何事物都是由相互对立的两个方面组成,并且这两个方面的对立是统一的、辩证的。因此,矛盾是客观事物存在的普遍规律,只有正确认识和处理矛盾,才能够正确的认识和改造客观世界。

辩证思维的方法主要有辩证唯物主义和辩证法。辩证唯物主义认为,世界是由矛盾、对立面和他们之间的斗争演变而来的,矛盾是推动事物发展的主要动力。辩证法则是研究和认识矛盾运动和矛盾解决的方法论,通过对事物内部矛盾的分析,找出事物发展的矛盾规律,以此来指导实践活动。

辩证思维的意义

辩证思维具有深远的意义,它不仅指导着科学理论的发展,也指导着人们的实践活动。首先,在科学领域,辩证思维是开展科学研究的基本方法。只有通过矛盾的对立统一来认识事物的本质和规律,才能够得出科学的结论。其次,在实践活动中,辩证思维也起着重要的作用。不管是经济建设、社会发展还是个人成长,都需要运用辩证思维来正确处理各种矛盾问题,从而推动事业的发展。

辩证思维的意义还表现在以下几个方面:

  • 扩大认识领域:辩证思维通过对事物矛盾的认识,可以使人们从更广阔的角度来认识世界,提高认识能力。
  • 推动科学进步:辩证思维是科学研究的基本方法,使科学上的发现和创新得以实现。
  • 指导实践活动:辩证思维可以帮助人们正确处理各种矛盾问题,推动社会的发展和个人的成长。

如何运用辩证思维

辩证思维不仅是一种思维方式,也是一种方法论。在实际运用中,我们可以通过以下几个方面来运用辩证思维:

  • 全面思考:辩证思维要求我们从多个角度、多个方面来认识事物,不偏不倚地从整体和局部的关系来看待问题。
  • 正确认识矛盾:辩证思维强调对事物矛盾的正确认识,要从多个方面来看待矛盾,找出事物发展的矛盾规律。
  • 善于分析问题:辩证思维要求我们善于分析问题,找出问题的实质和根本原因,以此来指导解决问题的方法和措施。
  • 注重实践:辩证思维认为实践是检验真理的唯一标准,因此要注重实践,通过实践来检验和验证我们的认识。

结语

辩证思维作为一种重要的思维方式和方法论,对于认识和改造客观世界具有重要意义。它通过对矛盾的正确认识和处理,推动了科学的发展和实践的进步。在实际运用中,我们应该始终坚持辩证思维,不断提高自己的认识能力和分析问题的能力。

九、关于讨论家电的英语作文?

Household appliances are convenient. Our life is in our daily life. It is necessary for us to use household appliances or small household appliances. With the help of household appliances, we can live a simple life, which is very helpful

十、关于报酬讨论的作文英语?

Paying Kids for Chores?

  A rising proportion of parents pay their children to do chores around the house nowadays. For example, some parents will give their kids allowances if they clean the room, do laundry, set the table, or prepare simple food for the family.

  People differ on whether parents should pay their kids for doing housework. Supporters say tying kids’ allowances to housework is a good way to teach kids accountability and responsibility. It also helps children learn about money and how it works. But critics of this approach say children should do routine housework for free. The reason is simple: chores are part of a family, and everyone does chores.

  Personally, I don’t think parents should adopt the pay-for-work view. Paying kids to help out sends the wrong massage: they are entitled to freely have everything parents provide for them while the contributions they make to the family have to be paid for. It risks creating teenagers who would worship money and who are likely to drive a hard bargain just to take out the garbage.