一、地热能如何开发?
第一,加强前期地质论证工作,提高钻井成功率。近年来,各地地质队伍采用先进技术方法进行综合勘查,综合解释,切实开展前期地质论证工作,在进行充分论证的基础上,确定探采结合的地热井井位。实践表明,在石油部门打过油气探井的地方打地热井,成功率较高。而在一些地方,由于地质构造复杂,勘查技术手段有限,致使钻探工作失利,大量资金流失。目前,就地热勘探工作的发展势头看,各地地热井越打越深,不仅在地热异常区打井,在非异常区也打井,风险很大。因此,为提高钻井成功率,最大限度地减少钻探风险,做好前期地质论证工作取得必要的地质依据,是十分重要的。 第二,发展地热资源的直接利用和梯级利用。如前所述,我国中西部的大部分地区地热资源丰富,类型齐全,分布广泛,且多为中低温。高温地热资源仅分布在藏南、滇西和川西地区。因此,在我国中西部地热资源的开发利用方面,以发展中低温地热资源的非发电利用,即直接利用为宜,如在纺织、印染、造纸、热供水、饮用等方面开展综合利用。目前,在我国中西部的一些地热区,地热采暖后尾水的温度多在30~40℃之间,尚未充分利用就被大量排出,说明目前资源浪费的现象是较为普遍的。建议按不同温度开展地热资源的梯级利用,即根据“因地制宜,物尽其用”的原则,发挥资源优势,减少浪费,提高地热利用率。 第三,发展高温地热资源的非电利用。对一些高温温泉、沸泉以及间歇喷泉来说,发电利用并不是地热开发利用的唯一方向。比如间歇喷泉,它是在特定的地质构造背景下形成的,在世界范围内仅发现数处,如美国黄石公园的老实泉、冰岛大喷泉以及我国藏南的搭各加、谷露、查布和川西的热坑(茶洛)等,均属十分罕见的奇特景观。发展上述地热景观的非电利用,对于保护这类自然“瑰宝”更具有深远意义。 第四,合理开采,有效保护,实现地热资源的可持续开发。地热资源是可再生的能源资源,同时又是有限的资源,其补给的过程是极其缓慢的。在我国中西部的一些地热田,如羊八井、西安、昆明、郑州等地,由于过量开采而引起水位持续下降,有的地方已导致资源枯竭,严重影响到地热田的寿命。为保持地热井水量和水压的稳定及防止地热尾水对环境的影响,一方面要加强管理、采取限量打井、限制开采量等措施,合理开采、有效保护,另一方面,需结合地热田具体条件,反复进行回灌试验取得可靠参数,以确保地热资源的可持续开发。
二、地热开发安全技术规程?
地暖系统施工程序及技术要求如下:一、整平地面整平地面是安装地暖的先决条件,如果地面不平不仅会影响地暖保温,甚至如果有尖利的东西,还会划破地暖管,地面整平要先将地面凹凸处剔除找平至±10mm地面上杂物等清理干净保证地面平整,墙、柱脚与地面呈90度直角。
二、安装集分水器将分集水器水平安装于图纸指置,分水器于上集水器于下,间距200mm。集水器距地面高度不小于300mm安装牢固。
安装主管道时应保持3‰坡度,隔一定距离安装固定支架或掉卡,安装完成打压验收后做保温。
三、铺设保温层、反射膜在找平层上铺设保温层,板缝处用胶粘贴牢固,在地暖保温层上铺设铝箔纸或粘一层带坐标分格线的复合镀铝聚脂膜,保温层要铺设平整。
反射膜铺贴在保温板上,一定平整,不得有褶皱,并且要遮盖严密,不得有漏保温板或地面现象。
四、铺设盘管严格按照设计施工图纸铺
三、石墨烯纳米技术地热采暖
石墨烯纳米技术在地热采暖中的应用
石墨烯作为一种独特的二维纳米材料,具有卓越的导热和电导率,在各个领域展现出巨大的应用潜力。近年来,随着纳米技术的发展,石墨烯纳米技术在能源领域的应用备受关注,特别是在地热采暖方面。
地热采暖作为清洁、环保的能源利用方式,以地下的地热资源为能源,通过地热泵等设备实现建筑物供热。然而,传统的地热采暖系统存在着一定的问题,如导热效率低、设备体积大等。而石墨烯纳米技术的引入,为地热采暖领域带来了新的机遇。
石墨烯纳米技术在地热采暖中的应用主要体现在以下几个方面:
- 提高导热效率:石墨烯具有优异的导热性能,可以作为地热泵中的传热介质,提高传热效率,减少能量损耗。
- 减小设备体积:利用石墨烯纳米材料的超薄特性,可以设计制造更小巧的地热采暖设备,节省空间。
- 提升系统稳定性:石墨烯具有优异的化学稳定性和机械强度,可以提升地热采暖系统的稳定性和使用寿命。
石墨烯纳米技术的优势
石墨烯纳米技术之所以能够在地热采暖中得到应用,主要归功于其独特的优势:
首先,石墨烯具有极高的导热性能,是目前已知导热性最好的材料之一,比铜的导热性能还要高出几倍。这意味着石墨烯能够快速、高效地传递热量,提高地热采暖系统的整体效率。
其次,石墨烯具有超高的表面积和强大的机械强度,能够承受高温高压的环境,不易受到损坏,保证了地热采暖系统的稳定性和安全性。
此外,石墨烯还具有优异的化学稳定性和耐腐蚀性,能够抵御各种化学物质的侵蚀,延长地热采暖设备的使用寿命,减少维护成本。
石墨烯纳米技术在地热采暖中的发展现状
目前,石墨烯纳米技术在地热采暖中的应用仍处于起步阶段,但已经取得了一些进展。
首先,一些研究机构和企业已经开始探索利用石墨烯纳米技术改进地热采暖系统的传热性能和稳定性,取得了一定的成果。
其次,一些新型地热采暖设备开始采用石墨烯材料,如石墨烯导热片、石墨烯加热元件等,以提高地热采暖设备的效率和性能。
未来,随着石墨烯纳米技术的不断发展和应用研究的深入,相信石墨烯纳米技术在地热采暖领域将会有更广阔的应用前景,为清洁能源的发展做出更大的贡献。
四、地热开发利用用什么资质?
地热资源属于国家所有,地热资源的勘查和开发也必须严格遵照《中华人民共和国矿产资源法》等有关法律、行政法规的规定,依法取得探矿权、采矿权,办理地热探矿权许可证、地热水采矿许可证。
每个省对于地热资源的管理审批制度都是建立在《中华人民共和国矿产资源法》基础上的,都是沿袭国家对于矿产资源的管理办法制定的。
五、地热开发取热怎么回灌?
地热开发中的取热过程会产生大量的热水或蒸汽,这些热水或蒸汽需要被回灌到地下水层中,以保持地下水层的稳定性和防止环境污染。
回灌主要分为两种方式:直接回灌和间接回灌。
直接回灌是指将取出的热水或蒸汽,经过处理后直接回灌到原井或井群中,以保持地下水层的压力和稳定性。
间接回灌是指先将取出的热水或蒸汽进行处理,再将其注入到不同的地下水层中,以达到更好的环境保护和资源利用效益。
回灌的处理包括沉淀、过滤、消毒等步骤,以确保回灌水的质量符合环境保护要求。同时,回灌还需要考虑水量和流速的控制,以避免对地下水层的影响。
六、地热能开发成本?
中国的地热能开发成本仅为冰岛的七分之一
七、开发地热能项目钢管安全质量好的求推荐?
瓦卢瑞克在安全质量这一方面还是投入了蛮大的心血的,工厂的质量管理、健康管理、环境管理方面在业内都算比较好的,所以他们家的钢管质量也广受好评。
八、开发商铺的地热是几分管?
应该是用四分管进行,因为四分管的流量大一些,对暖气的循环会有很大的影响,也增加了散热面积,对室温的保证起的作用很大。
一般来说实用面积不超过一百平方的房屋四分管的数量应该在六根左右,再多也没有必要,调节室内的温度足够了。
九、地热能开发利用方案?
地热资源综合利用、梯级利用方案 根据地热井开采时段内每天的允许开采量~放热量、水质~结合利用方提供的 利用方向和初步方案~提出既能满足用户需求又满足资源允许开采的方案~不能满 足时还要提出建议采取的方式~按照梯级利用、高效利用的原则~提出不同用途的 地热资源利用方案。方案主要包括建设规模与工程布局~热水利用模式、利用规模 与工艺流程,综合利用、梯级利用,、对开发利用方案的科学合理性进行论证等。 ,
地热资源保护方案 对地热尾水回灌进行可行性论证、按照地热资源管理条例的有关规定~有回灌 条件的地区需提出地热尾水回灌方案,地热开发后的地热尾水二次利用
十、地热能如何开发与应用?
地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达7000℃。透过地下水的流动和熔岩涌至离地面1~5千米的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。地热能是可再生资源。 分布 地热能集中分布在构造板块边缘一带,该区域也是火山和地震多发区。 据美国地热资源委员会1990年的调查,世界上18个国家有地热发电机组,总装机容量5827.55兆瓦,装机容量在100兆瓦以上的国家有美国、菲律宾、墨西哥、意大利、新西兰、日本和印尼。我国的地热资源也很丰富,但开发利用程度很低,主要分布在云南、西藏、河北等省区。 世界地热资源主要分布于以下5个地热带: (1)环太平洋地热带。世界最大的太平洋板块与美洲、欧亚、印度板块的碰撞边界,即从美国的阿拉斯加、加利福尼亚到墨西哥、智利,从新西兰、印度尼西亚、菲律宾到中国沿海和日本。世界许多地热田都位于这个地热带,如美国的盖瑟斯地热田、墨西哥的普列托、新西兰的怀腊开、中国台湾的马槽和日本的松川、大岳等地热田。 (2)地中海、喜马拉雅地热带。欧亚板块与非洲、印度板块的碰撞边界,从意大利直至中国的云南、西藏。如意大利的拉德瑞罗地热田和中国西藏的羊八井及云南的腾冲地热田均属这个地热带。 (3)大西洋中脊地热带。大西洋板块的开裂部位,包括冰岛和亚速尔群岛的一些地热田。 (4)红海、亚丁湾、东非大裂谷地热带。包括肯尼亚、乌干达、刚果(金)、埃塞俄比亚、吉布提等国的地热田。 (5)其他地热区。除板块边界形成的地热带外,在板块内部靠近边界的部位,在一定的地质条件下也有高热流区,可以蕴藏一些中低温地热,如中亚、东欧地区的一些地热田和中国的胶东、辽东半岛及华北平原的地热田。 作用 人类很早以前就开始利用地热能,例如利用温泉沐浴、医疗,利用地下热水取暖、建造农作物温室、水产养殖及烘干谷物等。但真正认识地热资源,并进行较大规模的开发利用却是始于20世纪中叶。 地热发电 地热发电是地热利用的最重要方式。高温地热流体应首先应用于发电。 地热发电和火力发电的原理是一样的,都是利用蒸汽的热能在汽轮机中转变为机械能,然后带动发电机发电。所不同的是,地热发电不像火力发电那样要装备庞大的锅炉,也不需要消耗燃料,它所用的能源就是地热能。地热发电的过程,就是把地下热能首先转变为机械能,然后再把机械能转变为电能的过程。要利用地下热能,首先需要有“载热体”把地下的热能带到地面上来。目前能够被地热电站利用的载热体,主要是地下的天然蒸汽和热水。按照载热体类型、温度、压力和其他特性的不同,可把地热发电的方式划分为蒸汽型地热发电和热水型地热发电两大类。 1.蒸汽型地热发电 蒸汽型地热发电是把蒸汽田中的干蒸汽直接引入汽轮发电机组发电,但在引入发电机组前应把蒸汽中所含的岩屑和水滴分离出去。这种发电方式最为简单,但干蒸汽地热资源十分有限,且多存于较深的地层,开采技术难度大,故发展受到限制。主要有背压式和凝汽式两种发电系统。 2.热水型地热发电 热水型地热发电是地热发电的主要方式。目前热水型地热电站有两种循环系统: (1)闪蒸系统。当高压热水从热水井中抽至地面,于压力降低部分热水会沸腾并“闪蒸”成蒸汽,蒸汽送至汽轮机做功;而分离后的热水可继续利用后排出,当然最好是再回注入地层。 (2)双循环系统。地热水首先流经热交换器,将地热能传给另一种低沸点的工作流体,使之沸腾而产生蒸汽。蒸汽进入汽轮机做功后进入凝汽器,再通过热交换器而完成发电循环。地热水则从热交换器回注入地层。这种系统特别适合于含盐量大、腐蚀性强和不凝结气体含量高的地热资源。发展双循环系统的关键技术是开发高效的热交换器。 地热供暖 将地热能直接用于采暖、供热和供热水是仅次于地热发电的地热利用方式。因为这种利用方式简单、经济性好,备受各国重视,特别是位于高寒地区的西方国家,其中冰岛开发利用得最好。该国早在1928年就在首都雷克雅未克建成了世界上第一个地热供热系统,现今这一供热系统已发展得非常完善,每小时可从地下抽取7740吨80℃的热水,供全市11万居民使用。由于没有高耸的烟囱,冰岛首都已被誉为“世界上最清洁无烟的城市”。此外利用地热给工厂供热,如用做干燥谷物和食品的热源, 用做硅藻土生产、木材、造纸、制革、纺织、酿酒、制糖等生产过程的热源也是大有前途的。目前世界上最大两家地热应用工厂就是冰岛的硅藻土厂和新西兰的纸浆加工厂。我国利用地热供暖和供热发展也非常迅速,在京津地区已成为地热利用中最普遍的方式之一。 地热务农 地热在农业中的应用范围十分广阔。如利用温度适宜的地热水灌溉农田,可使农作物早熟增产;利用地热水养鱼,在28℃水温下可加速鱼的育肥,提高鱼的出产率;利用地热建造温室,育秧、种菜和养花;利用地热给沼气池加温,提高沼气的产量等。将地热能直接用于农业在我国日益广泛,北京、天津、西藏和云南等地都建有面积大小不等的地热温室。各地还利用地热大力发展养殖业,如培养菌种、养殖鳗鱼、罗非鱼、罗氏沼虾等。 地热行医 地热在医疗领域的应用有诱人的前景,目前热矿水就被视为一种宝贵的资源,世界各国都很珍惜。由于地热水从很深的地下提取到地面,除温度较高外,常含有一些特殊的化学元素,从而使它具有一定的医疗效果。如含碳酸的矿泉水供饮用,可调节胃酸、平衡人体酸碱度;含铁矿泉水饮用后,可治疗缺铁贫血症; 氢泉、硫水氢泉洗浴可治疗神经衰弱和关节炎、皮肤病等。 由于温泉的医疗作用及伴随温泉出现的特殊的地质、地貌条件,使温泉常常成为旅游胜地,吸引大批疗养者和旅游者。在日本就有1500多个温泉疗养院,每年吸引1亿人到这些疗养院休养。我国利用地热治疗疾病的历史悠久,含有各种矿物元素的温泉众多,因此充分发挥地热的医疗作用,发展温泉疗养行业是大有可为的。 未来随着与地热利用相关的高新技术的发展,将使人们能更精确地查明更多的地热资源;钻更深的钻井将地热从地层深处取出,因此地热利用也必将进入一个飞速发展的阶段。 地热能在应用中要注意地表的热应力承受能力,不能形成过大的覆盖率,这会对地表温度和环境产生不利的影响!应用前景广阔的太阳能 太阳能,一般是指太阳光的辐射能量,在现代一般用做发电。自地球形成生物就主要以太阳提供的热和光生存,而自古人类也懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。但在化石燃料减少的情况下,才有意把太阳能进一步发展。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。广义上的太阳能是地球上许多能量的来源,如风能、化学能、水的势能等。 现在,太阳能的利用还不是很普及,利用太阳能发电还存在成本高、转换效率低的问题,但是太阳能电池在为人造卫星提供能源方面得到了应用。 原理 太阳能是太阳内部或者表面的黑子连续不断地核聚变反应过程产生的能量。地球轨道上的平均太阳辐射强度为1367瓦/米2。地球赤道的周长为40000千米,从而可计算出,地球获得的能量可达173000太瓦(功率单位,1太瓦=1012千瓦)。在海平面上的标准峰值强度为1千瓦/米2,地球表面某一点24小时的年平均辐射强度为0.20千瓦/时2,相当于有102000太瓦的能量,人类依赖这些能量维持生存,其中包括所有其他形式的可再生能源(地热能资源除外)。 虽然太阳能资源总量相当于现在人类所利用的能源的1万多倍,但太阳能的能量密度低,而且它因地而异,因时而变,这是开发利用太阳能面临的主要问题。太阳能的这些特点会使它在整个综合能源体系中的作用受到一定的限制。 尽管太阳辐射到地球大气层的能量仅为其总辐射能量的二十二亿分之一,但已高达173000太瓦,也就是说,太阳每秒钟照射到地球上的能量就相当于500万吨煤。地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等),从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。 太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。太阳能为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。 太阳能电池发电原理 太阳能电池是对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如单晶硅、多晶硅、非晶硅、砷化镓、硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。 当光线照射太阳能电池表面时,一部分光子被硅材料吸收,光子的能量传递给了硅原子,使电子发生了跃迁,成为自由电子,在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。 利弊 优点 (1)普遍:太阳光普照大地,没有地域的限制,无论陆地或海洋,无论高山或岛屿,处处皆有,可直接开发和利用,且无需开采和运输。 (2)无害:开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。 (3)巨大:每年到达地球表面上的太阳辐射能约相当于130万亿吨标煤,其总量属现今世界上可以开发的最大能源。 (4)长久:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。 缺点 (1)分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1000瓦左右;若按全年日夜平均,则只有200瓦左右。而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。 (2)不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但目前蓄能也是太阳能利用中较为薄弱的环节之一。 (3)效率低和成本高:目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。