一、下降时,起重电动机的的转速是多少?
我最近很忙,本来不想回答的,但是看见这个问题给答得乱了,提问的人也不知道哪个答案是对的,不得不说一下。
我们知道物体的运动方向和加速度方向(也就是作用力的方向)是可以相反的,也就是说,起重用电动机在提起重物和放下重物的转速是一样的,但是它产生的力矩是不一样的,起重用电动机在提起重物是产生和转动一样方向的力矩,在放下重物时是产生和转动方向相反的力矩,也就是制动力矩,这个制动力矩和重物在重力的作用下产生的力矩相等,合力矩为零,这样才能产生物体的匀速下降。
我是电气控制方面的高级工程师,在很多场合用到这样的控制方式,还有这个制动力矩不是简单的机械制动力矩,而是电磁产生的制动力矩,形象的说,在提起重物时,电动机就是电动机,放下重物时电动机就成为发电机了。。这样说明不知道你能够理解吗?
二、金融危机对机械有影响吗?
因为金融危机对国际和国内运输业制造业影响都很大,势必也会影响机械加工行业(也就是反推到它的原材料生产商会受到影响,而且形象很大),因为我是外行,也不知道你说的具体是哪一行的机械加工,建议你估计一下从生产线到推向市场所用的时间,以今天为例,如果现在开始进原材料,三月份可生产出第一部分,四月推向市场,六月赶制退出第二部分,(此期间原材料准备充足),9、10月份投放第三部分,收取利润。(个人意见,仅限参考)
三、主减速器工作原理?万向节工作原理?差速器工作原理?在转弯时差速器怎样实现工作的?
汽车减速器工作原理:主减速器是在传动系中起降低转速,增大转矩作用的主要部件,当发动机纵置时还具有改变转矩旋转方向的作用。它是依靠齿数少的齿轮带齿数多的齿轮来实现减速的,采用圆锥齿轮传动则可以改变转矩旋转方向。将主减速器布置在动力向驱动轮分流之前的位置,有利于减小其前面的传动部件(如离合器、变速器、传动轴等)所传递的转矩,从而减小这些部件的尺寸和质量。
万向节即万向接头,英文名称universal joint,是实现变角度动力传递的机件,用于需要改变传动轴线方向的位置,它是汽车驱动系统的万向传动装置的 “关节”部件。万向节与传动轴组合,称为万向节传动装置。
万向节的结构和作用有点象人体四肢上的关节,它允许被连接的零件之间的夹角在一定范围内变化。为满足动力传递、适应转向和汽车运行时所产生的上下跳动所造成的角度变化,前驱动汽车的驱动桥,半轴与轮轴之间常用万向节相连。但由于受轴向尺寸的限制,要求偏角又比较大,单个的万向节不能使输出轴与轴入轴的瞬时角速度相等,容易造成振动,加剧机件的损坏,产生很大的噪音,所以广泛采用各式各样的等速万向节。在前驱动汽车上,每个半轴用两个等速万向节,靠近变速驱动桥的万向节是半轴内侧万向节,靠近车轴的是半轴外侧万向节。在后驱动汽车上,发动机、离合器与变速器作为一个整体安装在车架上,而驱动桥通过弹性悬挂与车架连接,两者之间有一个距离,需要进行连接。汽车运行中路面不平产生跳动,负荷变化或者两个总成安装的位差等,都会使得变速器输出轴与驱动桥主减速器输入轴之间的夹角和距离发生变化,因此在后驱动汽车的万向节传动形式都采用双万向节,就是传动轴两端各有一个万向节,其作用是使传动轴两端的夹角相等,保证输出轴与轴入轴的瞬时角速度始终相等。
汽车差速器是驱动轿的主件。它的作用就是在向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。
汽车在拐弯时车轮的轨线是圆弧,如果汽车向左转弯,圆弧的中心点在左侧,在相同的时间里,右侧轮子走的弧线比左侧轮子长,为了平衡这个差异,就要左边轮子慢一点,右边轮子快一点,用不同的转速来弥补距离的差异。
差速器由行星齿轮、行星轮架(差速器壳)、半轴齿轮等零件组成。发动机的动力经传动轴进入差速器,直接驱动行星轮架,再由行星轮带动左、右两条半轴,分别驱动左、右车轮。差速器的设计要求满足:(左半轴转速)+(右半轴转速)=2(行星轮架转速)。当汽车直行时,左、右车轮与行星轮架三者的转速相等处于平衡状态,而在汽车转弯时三者平衡状态被破坏,导致内侧轮转速减小,外侧轮转速增加。
四、汽车排量后面加AT、MT是什么意思
AT是自动档,MT是手动档。
如果详细点说就是:
自动变速器(也称AT)的应用使汽车的操作更为简便。不过许多人将其与无级变速器概念混淆。其实,现在使用的自动变速器绝大多数还是根据车速和发动机负荷情况自动变换挡位的有级变速器。它只能在一定范围内实现扭矩传递的变化,所以不能称之为无级变速。
由于许多用户对自动变速器的结构和工作方式不太了解,在使用中难免会有不当之处,也就必然会引发一些自动变速器的故障。东莞龙华车行提醒各位司机朋友,在使用自动变速器时,应该了解以下几个问题:
自动变速器的换挡时机是非常重要的。何时准确换挡主要取决于车速和发动机负荷。
发动机油门开度较大时,发动机负荷较大,变速器处于较低挡位。相同车速下,发动机油门开度较小时,发动机负荷较小,变速器可处于较高挡位。因此可以运用油门的变化在一定程度上控制换挡时机。
驾驶装备自动变速器的车辆起步后,如果希望保持较好的加速性能,可以始终保持较大的油门开度,自动变速器会在较高车速时升入较高挡位;如果希望平稳行驶时,可以在适当时候轻抬油门踏板,变速器就会自动升挡。使发动机在相同车速时保持较低转速,可获得较好的经济性和宁静的驾驶感觉。这时再轻踏油门踏板继续加速,变速器不会马上退回原挡位,这是设计者为防止频繁换挡而设计的提前升挡、滞后降挡功能。明白了这个道理就可以随心所欲地享受自动变速器带来的驾驶乐趣了。
另外,装有自动变速器的车辆还普遍设置了全负荷开关。当油门踏板踩到底时,就会触动此开关,车辆在高速行驶中,变速器会马上强制降1个挡,使车辆在需要短距离加速超车时,能够获得良好的加速性。这是由自动变速器本身设计决定的。
由于单向离合器在自动变速器中的应用,不是所有挡位都能像手动变速器一样,能在下坡时利用发动机产生的反拖作用来控制车辆的下坡滑行速度,所以只有把自动变速器的操纵杆根据车速挂到3、2、1的限制挡位上,才能实现利用发动机反拖作用,来控制车辆下坡的滑行速度。
手动变速器(MT:Manual Transmission)是最原始的变速器,它采用干摩擦式离合器和齿轮组,由于每挡的齿轮组的齿数是固定的,所以各挡的变速比是个定值(也就是所谓的“级”)。比如,一挡变速比是3.455,二挡是2.056,再到五挡的0.85,这些数字再乘上主减速比就是总的传动比,总共只有5个值(5档手动),所以说它是有级变速器。
手动变速器是最常见的变速器,它的基本构造用一句话概括,就是两轴一中轴,即指输入轴、轴出轴和中间轴,它们构成了变速器的主体,当然还有一根倒档轴。手动变速器又称手动齿轮式变速器,含有可以轴向滑动的齿轮,通过不同齿轮的啮合达到变速变扭目的。输入轴也称第一轴,它的前端花键直接与离合器从动盘的花键套配合,从而传递由发动机过来的扭矩。第一轴上的齿轮与中间轴齿轮常啮合,只要输入轴一转,中间轴及其上的齿轮也随之转动。中间轴也称副轴,轴上固连多个大小不等的齿轮。输出轴又称第二轴,轴上套有各前进档齿轮,可随时在操纵装置的作用下与中间轴的对应齿轮啮合,从而改变本身的转速及扭矩。输出轴的尾端有花键与传动轴相联,通过传动轴将扭矩传送到驱动桥减速器。由此可知,变速器前进档位的驱动路径是:输入轴常啮齿轮-中间轴常啮齿轮-中间轴对应齿轮-第二轴对应齿轮。倒车轴上的齿轮也可以由操纵装置拨动,在轴上移动,与中间轴齿轮和输出轴齿轮啮合,以相反的旋转方向输出。
由于变速器输入轴与输出轴以各自的速度旋转,变换档位时合存在一个同步问题。两个旋转速度不一样齿轮强行啮合必然会发生冲击碰撞,损坏齿轮。因此,旧式变速器的换档要采用两脚离合的方式,升档在空档位置停留片刻,减档要在空档位置加油门,以减少齿轮的转速差。但这个操作比较复杂,难以掌握精确。因此设计师创造出同步器,通过同步器使将要啮合的齿轮达到一致的转速而顺利啮合。
目前全同步式变速器上采用的是惯性同步器,它主要由接合套、同步锁环等组成,它的特点是依靠摩擦作用实现同步。接合套、同步锁环和待接合齿轮的齿圈上均有倒角(锁止角),同步锁环的内锥面与待接合齿轮齿圈外锥面接触产生摩擦。锁止角与锥面在设计时已作了适当选择,锥面摩擦使得待啮合的齿套与齿圈迅速同步,同时又会产生一种锁止作用,防止齿轮在同步前进行啮合。当同步锁环内锥面与待接合齿轮齿圈外锥面接触后,在摩擦力矩的作用下齿轮转速迅速降低(或升高)到与同步锁环转速相等,两者同步旋转,齿轮相对于同步锁环的转速为零,因而惯性力矩也同时消失,这时在作用力的推动下,接合套不受阻碍地与同步锁环齿圈接合,并进一步与待接合齿轮的齿圈接合而完成换档过程。
手动变速器由于使用干摩擦式离合器和直接齿合的齿轮组,所以具有传动直接、结构简单、性能可靠的特点,它始终是爱好原始操控乐趣的用家的好朋友