一、心理学 什么是模式识别?它有哪些模型?
以下为本人精华笔记,绝非网页复制
模式识别理论,这个是理论热点
模式:刺激的空间组合和时间组合,即刺激的整体结构。如视觉刺激模式、听觉刺激模式等,各个模式都不相同,复杂模式还会包含子模式。
模式识别:个体确认所知觉的模式是什么,并将它与其它模式区分开来。是知觉研究中认知心理学的主要研究领域
模式识别过程:感觉信息与长时记忆的有关信息进行比较,决定它与哪个长时记忆中的项目有着最佳匹配的过程。
(1)模板匹配理论:长时记忆中存储了各种与过去生活中形成的外部模式相对应的袖珍副本(模板),内在模板与客观事物的刺激模式之间存在着一一对应的关系。模式识别是将刺激提供的信息与相应的模板进行匹配的过程
,是一种自下而上的加工模型。精确匹配
优点:模板说可以在一定程度上解释人在知觉过程中如何进行模式识别,并在实现具有人工智能的机器模式识别中得到了实际运用。
缺点:模板说在解释人的模式识别方面仍然有许多缺陷。①按照该理论的假设,每一个有千变万化现象的同一个事物,记忆系统中都要储备与之一一对应的模板才能识别,需要在记忆中存储大量模板②这种理论对模式识别的解释比较刻板和生硬,缺乏人们在实际知觉中对模式识别的灵活性和变通性③没有明确阐释模板匹配的机制,尤其难以解释人们迅速识别一个新的、不熟悉模式的现象。
(2)原型理论:记忆中储存的不是与刺激模式一一对应的模板,而是一类刺激模式的原型(有关某一类事物或刺激模式的概括性表征,反映一类客观事物所具有的共同基本特性)。模式识别是在记忆中找到与当前的刺激模式最相似的原型的过程,不需要严格匹配,只要存在相应的原型,新的、不熟悉的模式也可以得到识别。近似匹配
优点:原型匹配理论大大减少了模板的数量,不仅减轻了记忆负担,而且使模式识别的过程具有灵活性和变通性。这种识别过程基本与日常生活经验相符。
缺点:理论不够清晰直观;匹配过程只强调自上而下的加工,而缺少自下而上的加工。
(3)特征分析理论:每一种刺激模式都能被分解成一些基本特征,同一类别模式的刺激物具有共同的基本特征。刺激信息的特征和对这些特征的分析在模式识别过程中起着关键性的作用。
人已有的知识经验中的客观事物,以各种基本特征的方式储存在记忆系统中,模式识别的过程首先是对刺激信息的特征加以分析,抽取有关特征并加以合并,再与长时记忆系统中已储存的各种相应的特征比较,一旦获得二者特征之间最佳匹配,刺激就被识别。最佳匹配
优点:①依据刺激的特征进行识别,避免预加工的困难,使识别有更强的适应性②同样的特征可以出现在许多不同的模式中,极大地减轻了记忆负担③在识别中需要抽取必要的特征,再加以综合,使模式识别过程有更多的学习色彩。
缺点:只有自下而上的加工,没有自上而下的加工,由局部加工到整体加工,无法说明人在识别模式中的主动性和能动性。
实验58 视觉搜索实验(特征整合论)Treisman特雷斯曼,1980
鬼域模型:Selfridge (1959)提出,以特征分析为基础,将模式识别过程分为4个层次。即映象鬼(对外部刺激进行编码,形成刺激的映象)、特征鬼(对刺激的映象进行分析,分解为各种特征)、认知鬼(监视各种特征鬼的反应,当发现了有关的特征时就会喊叫)和决策鬼(根据这些认知鬼的喊叫,选择喊叫声最大的那个认知鬼所负责的模式,作为所要识别的模式)
二、人工神经网络在模式识别方面有哪些应用?仅仅是用来分类嘛
不仅仅是分类,用途非常广泛。经过多年的研究和发展,模式识别已成为当前比较先进的技术,被广泛应用到文字识别、语音识别、指纹识别、遥感图像识别、人脸识别、手写体字符的识别、工业故障检测、精确制导等方面。
模式识别的定义:是对表征事物或现象的各种形式的信息进行处理和分析,来对事物或现象进行描述、辨认、分类和解释的过程。该技术以贝叶斯概率论和申农的信息论为理论基础,对信息的处理过程更接近人类大脑的逻辑思维过程。
现在有两种基本的模式识别方法,即统计模式识别方法和结构模式识别方法。人工神经网络是模式识别中的常用方法,近年来发展起来的人工神经网络模式的识别方法逐渐取代传统的模式识别方法。
三、模式识别与智能系统 有哪些研究方向;毕业后就业方向?
模式识别与智能系统专业研究方向总共有五大类,分别是模式识别与智能信息处理,计算智能与智能系统,智能信息与控制,智能控制理论、方法及其应用,语音信号处理及应用。这个专业和人工智能、机器学习、数据挖掘、云计算、大数据分析等都有联系。毕业后可从事机器人,视觉识别,图像处理等相关职位。
模式识别与智能信息处理
该方向致力于模式识别的基础理论及其在图象视频信号处理中的应用研究,运用数学和信息科学的理论与方法,从信息处理的角度,研究模式信息处理的机理、计算理论和算法,使计算机实现类似于人的视觉能力。
研究数字图象和视频信息的检测、分析、传输、存储、压缩、重建等关键技术,在提出创新理论与算法的基础上,设计、研制和开发实用的高性能模式识别、图象视频处理以及医学图象处理的计算机应用系统。
计算智能与智能系统
本方向致力于生命计算学与人工智能系统的研究。生命计算学是计算智能概念的泛化,包括人工智能中的符号计算学和神经计算学,以及遗传算法、进化计算和DNA计算等;
人工生命系统是智能系统概念的泛化,包括智能信息处理系统、智能控制系统、机器人、细胞自动机等。该方向致力于模拟自然生命系统中信息与控制的规律,特别是生命的自组织、自学习、自适应、自修复、自生长以及自复制的基本特性,以及感知、知觉、认知、判断、推理、思维等智能行为;
以“计算”的形式表现智能,以人工生命系统实现智能,并将其应用于模式识别与图象处理、复杂动态系统建模、仿真与控制等领域。
智能信息与控制
控制论是“研究信息与控制一般规律的科学”,“信息与控制”是控制论的核心。在控制论思想中,“信息与控制”是生物系统和人工系统共有的特性,模拟生物智能,是控制论的基本思想。
“信息”、“控制”、“智能”、“生命”四个基本的概念,构成了控制论科学的全部基础。“智能信息与控制”是研究自然生命与人工系统中信息与控制一般规律的科学。
“智能信息与控制”方向以人工智能、控制论、系统论和信息论为理论基础,以计算机技术、电子技术和通讯技术为技术手段,以复杂演化系统为对象,类比自然生命与复杂演化系统中信息与控制的一般规律,研究面向复杂演化系统的智能控制原理和方法,并将这些规律、原理和方法应用于复杂系统的建模、仿真与控制。
智能控制理论、方法及其应用
该方向致力于具有多种复杂性和多级或分散信息结构的大规模控制系统研究。运用人工智能、计算智能(包括模糊逻辑、神经网络和进化计算)等理论与方法,结合现代控制理论(如鲁棒控制、自适应控制、变结构控制等),研究智能递阶、分散控制或优化调度系统。
主要包括:基于模式分类、计算智能和知识工程方法的大规模复杂系统的综合集成建模;基于计算机视觉的生产过程质量监测与优化控制;基于知识和模拟进化方法的多分辨率建模及模型的聚合/解聚和平滑一致性转换技术;智能控制系统的结构性质(如稳定性、能控(能观)性、自主性等)的研究;智能系统的整体优化方法及自组织保优机制的研究;
基于Agent技术的开放复杂巨系统的智能优化控制与决策;网络环境下的智能自动化理论与技术;基于现场总线技术的计算机控制与管理;离散事件和混杂系统的优化控制方法;在多种复杂性(如不确定性、非线性、参数时变、时滞等)融合条件下的非良定对象的知识基模型集成与智能优化控制策略和实现方法。
语音信号处理及应用
语音信号处理是当今信息科学研究领域中的一个重要分支,它是将数字信号处理与语音学相结合,解决现代通信领域中人与人之间、人与机器之间的信息交换问题。
语音信号处理学科在世界范围内取得了飞速发展,无论是在基础研究领域还是在各个特定的应用领域都出现了许多新算法和高性能的系统,取得了大量突破性的进展。
在硬件方面,随着计算机技术及DSP芯片的迅速更新换代,为各种日益复杂的语音处理算法的实时实现提供了可能性。在21世纪,这个研究领域的发展速度将更快,它与高速信息处理、传输和交换诸方面的关系将更加密切。
本方向主要研究语音信号数字处理的新理论、新方法及其应用,如语音编码,语音识别,语音合成,语音增强和语音编码等,满足通信与信息技术应用领域对语音处理技术的需求。
扩展资料
模式识别与智能系统是20世纪60年代以来在信号处理、人工智能、控制论、计算机技术等学科基础上发展起来的新型学科。该学科以各种传感器为信息源,以信息处理与模式识别的理论技术为核心,以数学方法与计算机为主要工具,探索对各种媒体信息进行处理、分类、理解并在此基础上构造具有某些智能特性的系统或装置的方法、途径与实现,以提高系统性能。模式识别与智能系统是一门理论与实际紧密结合,具有广泛应用价值的控制科学与工程的重要学科分支。
参考资料:搜狗百科-模式识别与智能系统